3.11.67 \(\int \frac {(2-5 x) \sqrt {x}}{(2+5 x+3 x^2)^{3/2}} \, dx\) [1067]

Optimal. Leaf size=155 \[ \frac {74 \sqrt {x} (2+3 x)}{3 \sqrt {2+5 x+3 x^2}}-\frac {2 \sqrt {x} (30+37 x)}{\sqrt {2+5 x+3 x^2}}-\frac {74 \sqrt {2} (1+x) \sqrt {\frac {2+3 x}{1+x}} E\left (\tan ^{-1}\left (\sqrt {x}\right )|-\frac {1}{2}\right )}{3 \sqrt {2+5 x+3 x^2}}+\frac {30 \sqrt {2} (1+x) \sqrt {\frac {2+3 x}{1+x}} F\left (\tan ^{-1}\left (\sqrt {x}\right )|-\frac {1}{2}\right )}{\sqrt {2+5 x+3 x^2}} \]

[Out]

74/3*(2+3*x)*x^(1/2)/(3*x^2+5*x+2)^(1/2)-2*(30+37*x)*x^(1/2)/(3*x^2+5*x+2)^(1/2)-74/3*(1+x)^(3/2)*(1/(1+x))^(1
/2)*EllipticE(x^(1/2)/(1+x)^(1/2),1/2*I*2^(1/2))*2^(1/2)*((2+3*x)/(1+x))^(1/2)/(3*x^2+5*x+2)^(1/2)+30*(1+x)^(3
/2)*(1/(1+x))^(1/2)*EllipticF(x^(1/2)/(1+x)^(1/2),1/2*I*2^(1/2))*2^(1/2)*((2+3*x)/(1+x))^(1/2)/(3*x^2+5*x+2)^(
1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 155, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {834, 853, 1203, 1114, 1150} \begin {gather*} \frac {30 \sqrt {2} (x+1) \sqrt {\frac {3 x+2}{x+1}} F\left (\text {ArcTan}\left (\sqrt {x}\right )|-\frac {1}{2}\right )}{\sqrt {3 x^2+5 x+2}}-\frac {74 \sqrt {2} (x+1) \sqrt {\frac {3 x+2}{x+1}} E\left (\text {ArcTan}\left (\sqrt {x}\right )|-\frac {1}{2}\right )}{3 \sqrt {3 x^2+5 x+2}}+\frac {74 \sqrt {x} (3 x+2)}{3 \sqrt {3 x^2+5 x+2}}-\frac {2 \sqrt {x} (37 x+30)}{\sqrt {3 x^2+5 x+2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((2 - 5*x)*Sqrt[x])/(2 + 5*x + 3*x^2)^(3/2),x]

[Out]

(74*Sqrt[x]*(2 + 3*x))/(3*Sqrt[2 + 5*x + 3*x^2]) - (2*Sqrt[x]*(30 + 37*x))/Sqrt[2 + 5*x + 3*x^2] - (74*Sqrt[2]
*(1 + x)*Sqrt[(2 + 3*x)/(1 + x)]*EllipticE[ArcTan[Sqrt[x]], -1/2])/(3*Sqrt[2 + 5*x + 3*x^2]) + (30*Sqrt[2]*(1
+ x)*Sqrt[(2 + 3*x)/(1 + x)]*EllipticF[ArcTan[Sqrt[x]], -1/2])/Sqrt[2 + 5*x + 3*x^2]

Rule 834

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*((f*b - 2*a*g + (2*c*f - b*g)*x)/((p + 1)*(b^2 - 4*a*c))), x] + Dist[1/
((p + 1)*(b^2 - 4*a*c)), Int[(d + e*x)^(m - 1)*(a + b*x + c*x^2)^(p + 1)*Simp[g*(2*a*e*m + b*d*(2*p + 3)) - f*
(b*e*m + 2*c*d*(2*p + 3)) - e*(2*c*f - b*g)*(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 0] && (IntegerQ[m] || IntegerQ[p]
 || IntegersQ[2*m, 2*p])

Rule 853

Int[((f_) + (g_.)*(x_))/(Sqrt[x_]*Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2, Subst[Int[(f +
 g*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x, Sqrt[x]], x] /; FreeQ[{a, b, c, f, g}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1114

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(2*a + (b - q
)*x^2)*(Sqrt[(2*a + (b + q)*x^2)/(2*a + (b - q)*x^2)]/(2*a*Rt[(b - q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]))*Elli
pticF[ArcTan[Rt[(b - q)/(2*a), 2]*x], -2*(q/(b - q))], x] /; PosQ[(b - q)/a]] /; FreeQ[{a, b, c}, x] && GtQ[b^
2 - 4*a*c, 0]

Rule 1150

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[x*((b -
q + 2*c*x^2)/(2*c*Sqrt[a + b*x^2 + c*x^4])), x] - Simp[Rt[(b - q)/(2*a), 2]*(2*a + (b - q)*x^2)*(Sqrt[(2*a + (
b + q)*x^2)/(2*a + (b - q)*x^2)]/(2*c*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[ArcTan[Rt[(b - q)/(2*a), 2]*x], -2*(
q/(b - q))], x] /; PosQ[(b - q)/a]] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1203

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[d, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Dist[e, Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b +
 q)/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {(2-5 x) \sqrt {x}}{\left (2+5 x+3 x^2\right )^{3/2}} \, dx &=-\frac {2 \sqrt {x} (30+37 x)}{\sqrt {2+5 x+3 x^2}}-2 \int \frac {-15-\frac {37 x}{2}}{\sqrt {x} \sqrt {2+5 x+3 x^2}} \, dx\\ &=-\frac {2 \sqrt {x} (30+37 x)}{\sqrt {2+5 x+3 x^2}}-4 \text {Subst}\left (\int \frac {-15-\frac {37 x^2}{2}}{\sqrt {2+5 x^2+3 x^4}} \, dx,x,\sqrt {x}\right )\\ &=-\frac {2 \sqrt {x} (30+37 x)}{\sqrt {2+5 x+3 x^2}}+60 \text {Subst}\left (\int \frac {1}{\sqrt {2+5 x^2+3 x^4}} \, dx,x,\sqrt {x}\right )+74 \text {Subst}\left (\int \frac {x^2}{\sqrt {2+5 x^2+3 x^4}} \, dx,x,\sqrt {x}\right )\\ &=\frac {74 \sqrt {x} (2+3 x)}{3 \sqrt {2+5 x+3 x^2}}-\frac {2 \sqrt {x} (30+37 x)}{\sqrt {2+5 x+3 x^2}}-\frac {74 \sqrt {2} (1+x) \sqrt {\frac {2+3 x}{1+x}} E\left (\tan ^{-1}\left (\sqrt {x}\right )|-\frac {1}{2}\right )}{3 \sqrt {2+5 x+3 x^2}}+\frac {30 \sqrt {2} (1+x) \sqrt {\frac {2+3 x}{1+x}} F\left (\tan ^{-1}\left (\sqrt {x}\right )|-\frac {1}{2}\right )}{\sqrt {2+5 x+3 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 20.12, size = 140, normalized size = 0.90 \begin {gather*} \frac {148+190 x+74 i \sqrt {2} \sqrt {1+\frac {1}{x}} \sqrt {3+\frac {2}{x}} x^{3/2} E\left (i \sinh ^{-1}\left (\frac {\sqrt {\frac {2}{3}}}{\sqrt {x}}\right )|\frac {3}{2}\right )+16 i \sqrt {2} \sqrt {1+\frac {1}{x}} \sqrt {3+\frac {2}{x}} x^{3/2} F\left (i \sinh ^{-1}\left (\frac {\sqrt {\frac {2}{3}}}{\sqrt {x}}\right )|\frac {3}{2}\right )}{3 \sqrt {x} \sqrt {2+5 x+3 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((2 - 5*x)*Sqrt[x])/(2 + 5*x + 3*x^2)^(3/2),x]

[Out]

(148 + 190*x + (74*I)*Sqrt[2]*Sqrt[1 + x^(-1)]*Sqrt[3 + 2/x]*x^(3/2)*EllipticE[I*ArcSinh[Sqrt[2/3]/Sqrt[x]], 3
/2] + (16*I)*Sqrt[2]*Sqrt[1 + x^(-1)]*Sqrt[3 + 2/x]*x^(3/2)*EllipticF[I*ArcSinh[Sqrt[2/3]/Sqrt[x]], 3/2])/(3*S
qrt[x]*Sqrt[2 + 5*x + 3*x^2])

________________________________________________________________________________________

Maple [A]
time = 0.75, size = 107, normalized size = 0.69

method result size
default \(-\frac {21 \sqrt {6 x +4}\, \sqrt {3 x +3}\, \sqrt {6}\, \sqrt {-x}\, \EllipticF \left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )-37 \sqrt {6 x +4}\, \sqrt {3 x +3}\, \sqrt {6}\, \sqrt {-x}\, \EllipticE \left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )+666 x^{2}+540 x}{9 \sqrt {x}\, \sqrt {3 x^{2}+5 x +2}}\) \(107\)
elliptic \(\frac {\sqrt {x \left (3 x^{2}+5 x +2\right )}\, \left (-\frac {2 x \left (10+\frac {37 x}{3}\right ) \sqrt {3}}{\sqrt {x \left (x^{2}+\frac {5}{3} x +\frac {2}{3}\right )}}+\frac {10 \sqrt {6 x +4}\, \sqrt {3 x +3}\, \sqrt {-6 x}\, \EllipticF \left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )}{\sqrt {3 x^{3}+5 x^{2}+2 x}}+\frac {37 \sqrt {6 x +4}\, \sqrt {3 x +3}\, \sqrt {-6 x}\, \left (\frac {\EllipticE \left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )}{3}-\EllipticF \left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )\right )}{3 \sqrt {3 x^{3}+5 x^{2}+2 x}}\right )}{\sqrt {x}\, \sqrt {3 x^{2}+5 x +2}}\) \(182\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2-5*x)*x^(1/2)/(3*x^2+5*x+2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/9*(21*(6*x+4)^(1/2)*(3*x+3)^(1/2)*6^(1/2)*(-x)^(1/2)*EllipticF(1/2*(6*x+4)^(1/2),I*2^(1/2))-37*(6*x+4)^(1/2
)*(3*x+3)^(1/2)*6^(1/2)*(-x)^(1/2)*EllipticE(1/2*(6*x+4)^(1/2),I*2^(1/2))+666*x^2+540*x)/x^(1/2)/(3*x^2+5*x+2)
^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-5*x)*x^(1/2)/(3*x^2+5*x+2)^(3/2),x, algorithm="maxima")

[Out]

-integrate((5*x - 2)*sqrt(x)/(3*x^2 + 5*x + 2)^(3/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.36, size = 82, normalized size = 0.53 \begin {gather*} \frac {2 \, {\left (85 \, \sqrt {3} {\left (3 \, x^{2} + 5 \, x + 2\right )} {\rm weierstrassPInverse}\left (\frac {28}{27}, \frac {80}{729}, x + \frac {5}{9}\right ) - 333 \, \sqrt {3} {\left (3 \, x^{2} + 5 \, x + 2\right )} {\rm weierstrassZeta}\left (\frac {28}{27}, \frac {80}{729}, {\rm weierstrassPInverse}\left (\frac {28}{27}, \frac {80}{729}, x + \frac {5}{9}\right )\right ) - 27 \, \sqrt {3 \, x^{2} + 5 \, x + 2} {\left (37 \, x + 30\right )} \sqrt {x}\right )}}{27 \, {\left (3 \, x^{2} + 5 \, x + 2\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-5*x)*x^(1/2)/(3*x^2+5*x+2)^(3/2),x, algorithm="fricas")

[Out]

2/27*(85*sqrt(3)*(3*x^2 + 5*x + 2)*weierstrassPInverse(28/27, 80/729, x + 5/9) - 333*sqrt(3)*(3*x^2 + 5*x + 2)
*weierstrassZeta(28/27, 80/729, weierstrassPInverse(28/27, 80/729, x + 5/9)) - 27*sqrt(3*x^2 + 5*x + 2)*(37*x
+ 30)*sqrt(x))/(3*x^2 + 5*x + 2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \left (- \frac {2 \sqrt {x}}{3 x^{2} \sqrt {3 x^{2} + 5 x + 2} + 5 x \sqrt {3 x^{2} + 5 x + 2} + 2 \sqrt {3 x^{2} + 5 x + 2}}\right )\, dx - \int \frac {5 x^{\frac {3}{2}}}{3 x^{2} \sqrt {3 x^{2} + 5 x + 2} + 5 x \sqrt {3 x^{2} + 5 x + 2} + 2 \sqrt {3 x^{2} + 5 x + 2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-5*x)*x**(1/2)/(3*x**2+5*x+2)**(3/2),x)

[Out]

-Integral(-2*sqrt(x)/(3*x**2*sqrt(3*x**2 + 5*x + 2) + 5*x*sqrt(3*x**2 + 5*x + 2) + 2*sqrt(3*x**2 + 5*x + 2)),
x) - Integral(5*x**(3/2)/(3*x**2*sqrt(3*x**2 + 5*x + 2) + 5*x*sqrt(3*x**2 + 5*x + 2) + 2*sqrt(3*x**2 + 5*x + 2
)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-5*x)*x^(1/2)/(3*x^2+5*x+2)^(3/2),x, algorithm="giac")

[Out]

integrate(-(5*x - 2)*sqrt(x)/(3*x^2 + 5*x + 2)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} -\int \frac {\sqrt {x}\,\left (5\,x-2\right )}{{\left (3\,x^2+5\,x+2\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x^(1/2)*(5*x - 2))/(5*x + 3*x^2 + 2)^(3/2),x)

[Out]

-int((x^(1/2)*(5*x - 2))/(5*x + 3*x^2 + 2)^(3/2), x)

________________________________________________________________________________________